?????????? ????????? - ??????????????? - /usr/lib64/python3.9/site-packages/numpy/core/__pycache__/multiarray.cpython-39.pyc
???????
a z[yc�� � @ s� d Z ddlZddlmZ ddlmZ ddlT ddlmZmZmZmZm Z m Z mZmZm Z mZmZ g d�Zd e _d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e_d e _d e!_d e"_d e#_d e$_d e%_d e&_ej'ej(d ddd �Z)e)ej*�d>dd��Z*e)ej+�d?ddd�dd��Z+e)ej,�dd� �Z,e)ej-�d@dd��Z-e)ej.�dAdd��Z.e)ej/�dBdd��Z/e)ej0�dd� �Z0e)ej1�dd� �Z1e)ej2�dCdd ��Z2e)ej3�d!d"� �Z3e)ej4�dDd#d$��Z4e)ej5�dEd%d&��Z5e)ej6�dFd'd(��Z6e)ej7�dGd)d*��Z7e)ej8�d+d,� �Z8e)ej9�dHd.d/��Z9e)ej:�dId0d1��Z:e)ej;�dJd2d3��Z;e)ej!�dKd4d5��Z!e)ej<�dLd6d7��Z<e)ej=�dMd8d9��Z=e)ej>�dNd:d;��Z>e)ej?�dOd<d=��Z?dS )Pa Create the numpy.core.multiarray namespace for backward compatibility. In v1.16 the multiarray and umath c-extension modules were merged into a single _multiarray_umath extension module. So we replicate the old namespace by importing from the extension module. � N� )� overrides)�_multiarray_umath)�*)�_fastCopyAndTranspose� _flagdict�from_dlpack�_insert�_reconstruct�_vec_string� _ARRAY_API� _monotonicity�_get_ndarray_c_version�_get_madvise_hugepage�_set_madvise_hugepage)]r Z ALLOW_THREADS�BUFSIZEZCLIPZ DATETIMEUNITSZITEM_HASOBJECTZITEM_IS_POINTERZLIST_PICKLEZMAXDIMSZMAY_SHARE_BOUNDSZMAY_SHARE_EXACTZ NEEDS_INITZNEEDS_PYAPIZRAISEZUSE_GETITEMZUSE_SETITEMZWRAPr r r r r r r Z add_docstring�arange�array�asarray� asanyarray�ascontiguousarray�asfortranarray�bincount� broadcast�busday_count� busday_offsetZbusdaycalendar�can_castZcompare_chararrays�concatenate�copytoZ correlateZ correlate2Z count_nonzeroZc_einsum�datetime_as_string� datetime_data�dotZdragon4_positionalZdragon4_scientific�dtype�empty� empty_like�errorZflagsobjZflatiterZformat_longfloat� frombuffer�fromfile�fromiter� fromstringZget_handler_nameZget_handler_version�innerZinterpZinterp_complex� is_busday�lexsort�matmul�may_share_memory�min_scalar_typeZndarrayZnditer�nested_itersZnormalize_axis_index�packbits� promote_types�putmask�ravel_multi_index�result_type�scalarZset_datetimeparse_functionZset_legacy_print_mode�set_numeric_opsZset_string_functionZset_typeDict� shares_memoryZtracemalloc_domainZtypeinfo� unpackbits� unravel_index�vdot�where�zerosznumpy.core.multiarrayZnumpyTF)�moduleZdocs_from_dispatcherZverifyc C s | fS )a empty_like(prototype, dtype=None, order='K', subok=True, shape=None) Return a new array with the same shape and type as a given array. Parameters ---------- prototype : array_like The shape and data-type of `prototype` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. .. versionadded:: 1.6.0 order : {'C', 'F', 'A', or 'K'}, optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `prototype` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `prototype` as closely as possible. .. versionadded:: 1.6.0 subok : bool, optional. If True, then the newly created array will use the sub-class type of `prototype`, otherwise it will be a base-class array. Defaults to True. shape : int or sequence of ints, optional. Overrides the shape of the result. If order='K' and the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is implied. .. versionadded:: 1.17.0 Returns ------- out : ndarray Array of uninitialized (arbitrary) data with the same shape and type as `prototype`. See Also -------- ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. Notes ----- This function does *not* initialize the returned array; to do that use `zeros_like` or `ones_like` instead. It may be marginally faster than the functions that do set the array values. Examples -------- >>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) array([[-1073741821, -1073741821, 3], # uninitialized [ 0, 0, -1073741821]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) � )Z prototyper"