?????????? ????????? - ??????????????? - /usr/lib64/python3.9/site-packages/numpy/ma/__pycache__/extras.cpython-39.opt-1.pyc
???????
a z[yc�� � @ sv d Z g d�ZddlZddlZddlmZ ddlmZmZm Z m Z mZmZm Z mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddlZddlmZm Z ddl!m"Z" dd l#m$Z$ dd l%m&Z& ddl'm(Z( dd � Z)dsdd�Z*e+fdd�Z,dd� Z-G dd� d�Z.G dd� de.�Z/G dd� de.�Z0G dd� de.�Z1G dd� de.�Z2e2d�Z3e2d�Z4e2d �Z5e0d!� Z6Z7e0d"�Z8e0d#�Z9e0d$�Z:e0d%�Z;e/d&�Z<e/d'�Z=d(d)� Z>d*d+� Z?ej?j e?_ d,d-� Z@e@j du�r�ej@j dej@j �Ad.�� �B� d/ e@_ dtejCd1�d2d3�ZDdud4d5�ZEdvd6d7�ZFdwd8d9�ZGdxd:d;�ZHd<d=� ZId>d?� ZJejCfd@dA�ZKejCfdBdC�ZLdydDdE�ZMdzdFdG�ZNd{dHdI�ZOd|dJdK�ZPd}dLdM�ZQd~dNdO�ZRdPdQ� ZSddRdS�ZTd�dUdV�ZUd�dWdX�ZVddTejCdTejCfdYdZ�ZWG d[d\� d\e(�ZXG d]d^� d^eX�ZYeY� ZZd�d_d`�Z[dadb� Z\d�dcdd�Z]dedf� Z^d�dgdh�Z_didj� Z`dkdl� Zadmdn� Zbd�dodp�Zce�dejcj ecj �ec_ d�dqdr�Zee�dejej eej �ee_ dS )�z� Masked arrays add-ons. A collection of utilities for `numpy.ma`. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ ).�apply_along_axis�apply_over_axes� atleast_1d� atleast_2d� atleast_3d�average�clump_masked�clump_unmasked�column_stack� compress_cols�compress_nd�compress_rowcols� compress_rows�count_masked�corrcoef�cov�diagflat�dot�dstack�ediff1d�flatnotmasked_contiguous�flatnotmasked_edges�hsplit�hstack�isin�in1d�intersect1d� mask_cols�mask_rowcols� mask_rows� masked_all�masked_all_like�median�mr_�ndenumerate�notmasked_contiguous�notmasked_edges�polyfit� row_stack� setdiff1d�setxor1d�stack�unique�union1d�vander�vstack� N� )�core)�MaskedArray�MAError�add�array�asarray�concatenate�filled�count�getmask�getmaskarray�make_mask_descr�masked�masked_array�mask_or�nomask�ones�sort�zeros�getdata�get_masked_subclassr r )�ndarrayr5 )�normalize_axis_index)�normalize_axis_tuple)�_ureduce)�AxisConcatenatorc C s t | tttf�S )z6 Is seq a sequence (ndarray, list or tuple)? )� isinstancerF �tuple�list)�seq� rO �5/usr/lib64/python3.9/site-packages/numpy/ma/extras.py� issequence* s rQ c C s t | �}|�|�S )a� Count the number of masked elements along the given axis. Parameters ---------- arr : array_like An array with (possibly) masked elements. axis : int, optional Axis along which to count. If None (default), a flattened version of the array is used. Returns ------- count : int, ndarray The total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis. See Also -------- MaskedArray.count : Count non-masked elements. Examples -------- >>> import numpy.ma as ma >>> a = np.arange(9).reshape((3,3)) >>> a = ma.array(a) >>> a[1, 0] = ma.masked >>> a[1, 2] = ma.masked >>> a[2, 1] = ma.masked >>> a masked_array( data=[[0, 1, 2], [--, 4, --], [6, --, 8]], mask=[[False, False, False], [ True, False, True], [False, True, False]], fill_value=999999) >>> ma.count_masked(a) 3 When the `axis` keyword is used an array is returned. >>> ma.count_masked(a, axis=0) array([1, 1, 1]) >>> ma.count_masked(a, axis=1) array([0, 2, 1]) )r; �sum)�arr�axis�mrO rO rP r 2 s 2r c C s$ t t�| |�t�| t|��d�}|S )aC Empty masked array with all elements masked. Return an empty masked array of the given shape and dtype, where all the data are masked. Parameters ---------- shape : int or tuple of ints Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. dtype : dtype, optional Data type of the output. Returns ------- a : MaskedArray A masked array with all data masked. See Also -------- masked_all_like : Empty masked array modelled on an existing array. Examples -------- >>> import numpy.ma as ma >>> ma.masked_all((3, 3)) masked_array( data=[[--, --, --], [--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True], [ True, True, True]], fill_value=1e+20, dtype=float64) The `dtype` parameter defines the underlying data type. >>> a = ma.masked_all((3, 3)) >>> a.dtype dtype('float64') >>> a = ma.masked_all((3, 3), dtype=np.int32) >>> a.dtype dtype('int32') ��mask)r>